
 1

Supporting Efficient Development of Cognitive Models at Multiple
Skill Levels: Exploring Recent Advances in Constraint-based

Modeling
Irene Tollinger1, Richard L. Lewis2, Michael McCurdy1, Preston Tollinger1, Alonso Vera1,

Andrew Howes3, Laura Pelton1

1NASA Ames Research Center
Moffett Field, CA

irene.tollinger@nasa.gov

2Psychology
University of Michigan

Ann Arbor, MI
rickl@umich.edu

3School of Psychology
Cardiff University

Cardiff, UK
howesa@cardiff.ac.uk

ABSTRACT
This paper presents X-PRT, a new cognitive modeling tool
supporting activities ranging from interface design to basic
cognitive research. X-PRT provides a graphical model
development environment for the CORE constraint-based
cognitive modeling engine [7,13,21]. X-PRT comprises a
novel feature set: (a) it supports the automatic generation of
predictive models at multiple skill levels from a single task-
specification, (b) it supports a comprehensive set of
modeling activities, and (c) it supports compositional reuse
of existing cognitive/perceptual/motor skills by
transforming high-level, hierarchical task descriptions into
detailed performance predictions. Task hierarchies play a
central role in X-PRT, serving as the organizing construct
for task knowledge, the locus for compositionality, and the
cognitive structures over which the learning theory is
predicated. Empirical evidence supports the role of task
hierarchies in routine skill acquisition.

Author Keywords
user modeling, tools for usability evaluation.

ACM Classification Keywords
H.1.2. Human Factors, H.5.2 Theory and Methods

INTRODUCTION
Starting with Card, Moran and Newell [4] and continuing
through the present, modeling for a priori predictions of
human performance on interface-based tasks has matured
into an established subfield of Human-Computer
Interaction. The GOMS family of methods have been
validated by a large research pool (e.g. 5,6,11), and
detailed computational theories of human cognitive

architecture such as ACT-R, Epic, and Soar have been
applied successfully to models of complex interactive tasks
[1,15,17,20].

However, in practice, there has been little use of either the
GOMS methods or cognitive architectures in an applied
design context. There are many complex reasons for this
state of affairs, but one plausible and commonly-assumed
barrier to the adoption of current methods is that the cost of
modeling using these methods is too high relative to the
benefit of the human performance predictions generated.
Recently the research community has responded with
modeling support tools that simplify and to some degree
automate the modeler's task including CogTool [9],
Behavior Recorder [12], Act-Simple [18], ACT-Stitch [14],
Apex-CPM [10], G2A [19], and User Modeling Design
Tool [16]. These efforts represent important individual
successes, and the work reported here builds on them to
some degree. However, a common property of this work is
that it introduces a set of unfortunate tradeoffs between ease
of use and predictive power. For example, ACT-R contains
detailed process theories of declarative and procedural
learning, but these are not accessible via some of the
modeling tools [9,12,18] based on ACT-R. Other tools are
concerned with usability and provide advances by
automating some aspects of modeling [14,10,19,16], but
still require time, knowledge of psychology, and
programming skills beyond the resources available in
applied design contexts.

This paper provides an initial report on the development of
X-PRT, a new tool for developing cognitive models that is
intended to support modeling activities in service of goals
ranging from interface evaluation and design to basic
cognitive research. X-PRT departs from existing efforts to
build affordable modeling tools in several significant ways.
First, it supports the automatic generation of predictive
models at multiple skill levels from a single task-
specification. Second, it directly supports the compositional
reuse of existing cognitive model components. And third, it
was designed and implemented from the ground-up with
user-centered design principles to support a comprehensive
set of modeling subtasks. It is not an exploration of a single

 2

new piece of technology for making modeling easier, but
rather a complete environment for model development.

The first two features exploit recent new technical advances
in cognitive modeling made possible by CORE [7,13,21].
CORE stands for Constraint-based Optimizing Reasoning
Engine and is an implementation of a new general approach
to cognitive modeling based on constraint-reasoning and
optimization. X-PRT is the graphical model development
environment for CORE. Thus, X-PRT is jointly shaped by
the capabilities of CORE and a ground-up design effort to
support a comprehensive set of cognitive modeling
activities.

A key distinction of X-PRT over other similar efforts is that
it represents a significant attempt to preserve as much
predictive power as possible (the “benefit” side of the
cost/benefit equation) while at the same time lowering the
barriers to entry in terms of usability and required modeling
expertise (the “cost” side of the equation). This is an
especially difficult tradeoff to manage. Typically as
predictive power is increased, so is the complexity of the
tool. Therefore, most attempts to date have made significant
sacrifices to predictive power in an effort to decrease cost.
However, X-PRT allows the user to take advantage of
powerful advances in the underlying modeling engine
(CORE), in particular the ability to simulate users of
varying skill from a single model.

The remainder of this paper has the following structure.
First, there is a task analysis of cognitive modeling,
breaking it down into its necessary subtasks. In this
analysis the difficulties of each subtask are identified
individually (from the point of view of both design and
basic research) and used to help derive a set of requirements
for an effective modeling development environment. Next,
the design of X-PRT is described, with a focus on how the
capabilities of CORE are exploited to generate predictions
at multiple levels of experience from a single model. Next,
there is a brief overview of the essentials of CORE; the
reader is referred to [7,13,21] for more complete
presentations. Then the empirical human data supporting
the psychological reality of the learning theory specified in
CORE is briefly reviewed. Finally, comparisons to other
approaches and future work are covered.

AN ANALYSIS OF MODELING WORK
Breaking down the task of modeling into subcomponent
tasks provides an ontology for discussing current
challenges, requirements for an effective modeling support
tool, and the relative priority of these tasks for different
user goals. These goals lie along a spectrum between
modeling to conduct basic cognitive research and modeling
to evaluate or design/redesign an interface. Later these tasks
will frame the design of CORE and X-PRT as well as help
in comparing them to existing tools.

T1. Specifying Task Knowledge
Task knowledge (T1) is the specific information the user
must know to accomplish the task. The central problem
from the modeler's point of view in current approaches
based on cognitive architectures (ACT-R, Epic, Soar) is that
there is a mismatch between the level at which task
knowledge must be coded (the 50 ms production-rule level)
and the level at which the task is naturally specified.
Programming these systems also requires learning an
idiosyncratic syntax, and the code can be difficult to debug.
These problems are exacerbated in learning systems in
which the architecture itself is generating new code. As
noted earlier, approaches that do offer more abstract and
easier task specifications also offer reduced predictive
power (e.g., they do not support learning).

In conducting observational user research (Contextual
Inquiry method [3]), with modelers doing cognitive
research tasks, the authors found that users often start with
similar models and use them as a basis for creating new
ones. For example, a modeler developed a model of a
cockpit keypad based on a model of an Automated Teller
Machine (ATM). However, current systems do not provide
a systematic way to build more complex models from
existing components. For example, in the telephone
operator domain there are many subtasks that require
listening to an utterance and entering the result into a field
but the parameters (the utterance itself and the appropriate
field) are different. Modelers currently accomplish some
degree of reuse by copying and pasting.

The ability to effectively represent the task is likely to be
equally relevant for users with the goal of conducting
cognitive research as interface evaluation and design.
Perhaps it is slightly more important in the case of interface
evaluation and design because real world interactive tasks
are more likely to be relatively complex.

Thus, requirements for the improvement of task knowledge
specification (T1) include: a representation that abstracts
away from the complexities of an architectural
implementation, the ability to create general, reusable tasks,
and the ability to compose more complex tasks from these
reusable components.

T2. Specifying Operator Skill
The specification of operator skill (T2) is an explicit
statement about the level of skill that an operator brings to a
specific task (perhaps specified in terms of number of
practice trials). In the GOMS framework, the specification
of operator skill is accomplished implicitly by choice of
method. If the modeler wishes to predict behavior early in
practice, she chooses an appropriate method like the Key-
stroke Level Model (KLM) [4] and develops a model. If on
the other hand a modeler wishes to predict behavior late in
practice, she chooses a method like CPM-GOMS. This is
the type of strategy Baskin and John used to predict
behavior early and late in practice [2]. Kieras used a

 3

different rule set in each of the two models to predict
different levels of skill [8].

The alternative is to build a model in a learning architecture
such as ACT-R and use the architectural mechanisms to
generate predictions at multiple levels of practice. There is
an enormous cost to doing this: it is far more difficult to
build robust, functioning learning models than it is to build
non-learning performance models at some fixed skill level.
The nature of the learning is extremely sensitive to the
details of the knowledge representation, and it is more
difficult for modelers to debug code that they did not
generate.

There is also no easy way in any of the existing frameworks
to model tasks that are heterogeneous mixes of routine,
semi routine, and novice skill as are many real world tasks.
To take an applied example from NASA exploration
missions, the Mars mission uplink process is well-practiced
(done on a daily basis) but the content of each day's mission
plan is unique. Users pursing both cognitive research and
interface evaluation and design will need to specify
operator skill. However, the relevance of this functionality
will vary more based on the particular user base, task, and
domain being modeled rather than the modeler's focus on
research versus design.

In sum, the requirements for the specification of operator
skill (T2) include: the ability to generate learning models
with no additional cost beyond specifying the performance
model, the ability to generate multiple levels of skill from a
single task specification, and the ability to specify tasks
composed of subtasks that are heterogeneous with respect
to skill level.

T3. Specifying The Environment (Interface)
The specification of the environment or interface (T3) is the
information about the device the model needs in order to
make predictions. This specification can be simple or
complex. However, in order to support efficient modeling,
the goal should be to specify the minimum information
necessary (i.e., only the points at which the user interacts
with the environment). Otherwise, the modeler is in the
position of having to code the interface or at least hook up
the running code to a model. On the simpler side, tools (e.g.
Apex-CPM) often require either the inputs to Fitts’s Law
(distance and size) or the product of the Fitts’s Law
calculation [10]. Based on Contextual Inquires conducted
by the authors of modelers specifying an interface in Apex-
CPM [10], the process of measuring screen elements on a
printout with a ruler can take several hours. This process is
prone to measuring and input errors. CogTool, an existing
system supports improved interface specification involving
importing screenshots and indicating widgets in a
WYSIWYG manner [9].

In addition to position and dimension information necessary
to calculate targeting times using Fitts’s Law, often it is
necessary to encode some form of interactivity within a

model. For example, many systems exhibit a delay between
when an action takes place and when feedback is received.
As in the case of target specification, solutions to describing
interactivity range from encoding specific events in a
lightweight way to connecting models to running interfaces
in the world.

To generalize, requirements for the improvement of the
specification of environment or interface (T3) include: a
minimal description of the physical layout of the device
abstracted above the level of code, automatic calculation of
Fitts’s Law, the ability to define widgets whether on
screenshots of existing interfaces or new interfaces in a
WYSIWYG manner, and a simple notion of interactivity.

T4. Specifying The Architectural Assumptions About
Human Cognition
The specification of the architectural assumptions about
human cognition (T4) is the encoding of a theory of the
fixed information processing structure of the mind. In
practice, existing tools (ACT-R, Soar, Apex-CPM, etc.)
encode these assumptions in a manner that makes them
difficult to inspect, understand, or modify. For example, in
ACT-R the assumptions are buried in underlying Lisp code.
It is not currently possible to compare two models with
different architectural assumptions without building
multiple models. The user would have to develop models in
different systems (e.g. one model in ACT-R and one in
Soar). Specification of architectural assumptions is a task
squarely in the realm of cognitive research. Interface
evaluation and design requires a reasonable set of
assumptions that underlie any particular model.

Thus, requirements for the improvement of the specification
of the architectural assumptions (T4) include: an explicitly
stated set of assumptions, an abstraction above the code
level, and an ability to run a single model with different
architectural assumptions.

T5. Specifying Strategy (How Skills Are Put Together)
Task strategies are defined as the composition of existing
behaviors or skills in service of the specific new task goals
at hand. These existing behaviors or skills may be the
lowest-level, architecturally defined primitives (such as the
cognitive initiation of a button-press), or higher level
existing skills, which are themselves composed of more
primitive elements (such as the composition of a mouse-
movement-and-click strategy from a set of lower-level
cognitive, perceptual, and motor primitives). The difference
between the task level and strategy level is that the task
specification describes the high-level requirements in terms
of the interface itself, while the strategies specify how a
particular cognitive-perceptual-motor architecture is
actually used to realize the task requirements. In short,
strategies bridge the gap between the abstract task and a
specific cognitive architecture.

Defined this way, strategies encompass both GOMS-like
methods [4] and multi-tasking strategies sometimes

 4

associated with executive function, as realized in detail in
EPIC work [15]. The latter may range from quite task-
specific to fairly general. The EPIC work in particular has
revealed the complexity of such executive strategies in even
putatively simple multi-tasking situations.

Whether the strategies are task-specific methods or
executive multi-tasking methods, in existing approaches,
strategies are also represented as code with its attendant
problems. An effective modeling tool should support reuse
of strategies across tasks and models. This is both a
methodological and theoretical injunction: the modeler will
find modeling more efficient to the extent that existing code
can be reused, and the human operator that is being
modeled is also bringing to bear existing skills that will be
composed somehow to accomplish the novel task demands.

Although specification of lower-level strategies may
primarily be the province of basic cognitive research, it
must be possible for a user involved in an interface design
activity to specify new strategies as they develop novel
interaction methods for which strategies do not yet exist.
For the most part, users performing interface design
activities should rely on reasonably complete libraries for
standard interface strategies like move and click or click
and drag.

In sum, requirements for the specification of task strategies
(T5) are similar to those of T2, and include: the ability to
develop libraries of reusable strategies that work across
tasks and models, and the ability to compose these
strategies in the service of more complex tasks.

T6. Extracting Meta-Information About Behavior From
Model Output
The extraction of meta-information about behavior from
model output (T6) is the task of interpreting the behavior
predictions that the model produces. Many systems produce
trace output in which each low-level model action is
documented. This type of trace is often many pages long
and includes system oriented data (unique ID tags, long
time/date stamps) which coupled with the sheer volume of
information render it not human readable. Earlier manual
methods and Apex-CPM have provided users with Gantt
charts that are very long to scroll through and offer
information at a small grain size (individual motor,
perceptual, and cognitive operators of 50 milliseconds).
Some systems provide only the total predicted time. This
interpretation of predictions is relevant to both research and
design activities. Users doing both activities would likely
benefit by a high-level overview of their model to check for
mistakes. Users engaged in interface design would benefit
from suggestions as to the problems with the current
task/interface combination (a particular move takes a long
time or many items are stored in working memory at the
same time). Users engaged in cognitive research, on the
other hand, are likely to go from a high-level overview into
a detailed representation like a Gantt chart where low-level

assumptions about cognition are made explicit and can be
verified.

Thus, requirements for the improvement of the extraction of
meta-information about behavior from model output (T6)
include: a high level overview, an improvement suggestion
facility, and appropriate detailed views.

T7. Performing Overhead Tasks
Performing overhead tasks (T7) is a broad category for the
myriad of activities that do not directly contribute to a
particular component such as the task or user interface but
are nonetheless required in order to model. These tasks
include: installation, file management, command line model
execution, versioning, etc. Often these research toolkits are
composed of multiple applications (e.g. development
environment such as LISP, a text editor, a particular web
browser) that are often costly or difficult to install. A task
like file management may not appear to have a high cost,
but as the number of models increases scalability becomes a
concern. For example, users of CogTool were able to
generate 300 models over a summer but found them
difficult to manage (Bonnie John, personal
communication). Managing hundreds of files by file system
location and naming convention does not appear scalable.
When a modeler works at the code level, using currently
available tools, she must manage file versioning herself.
Unless the modeler saves an explicit version (via “save as”)
after each model run, which is time consuming, she cannot
return to previous version of the model at will. For
example, often mistakes are introduced and not noticed
until several saves and iterations later. In these cases, the
cause of the error can be difficult to reconstruct.

Therefore, the requirements for the support of overhead
tasks (T7) include: the ability to easily install and update a
single application, a framework to manage the many model
components, elimination of command line model execution,
and a low overhead versioning scheme.

Summary of Tasks
Table 1 presents a summary of tasks (T1-T7) and their
relevance to the disparate goals of cognitive research versus
interface design and evaluation. Based on the above
discussion, the tasks are broadly categorized as being of
high, low, or variable relevance to research versus design.

Component Tasks # Research Design

Task Knowledge T1 High High

Operator Skill T2 Varies Varies

Interface T3 Low High

Architectural Assumptions T4 High Low

Strategy T5 High Low

Model Output T6 High High

Overhead Tasks T7 High High

Table 1. Comparison of Task Importance to Research
versus Design Goals

 5

The tasks (T1-T7) and their associated requirements listed
in this section are by no means an exhaustive list of either.
These requirements, defined by a first-principles approach
to design (asking what an effective modeling support tool
should look like), drove the design of X-PRT. They also
serve as an opening position intended to spur discussion
within the research community.

DESIGN OF X-PRT
While the focus of this work is the ability to model at
different levels of experience, it is necessary to introduce
the design of X-PRT at a high level in order to place
particular functionality and design decisions in context.

X-PRT, a cross platform Java application, is designed to
fulfill the requirements that support the modeler’s task as
described above. X-PRT’s interface metaphor, that of an
Integrated Development Environment (IDE), was chosen
for two reasons. First, the IDE-like multi-document project
metaphor is appropriate for the large number of model
components (task, user interface, architecture, strategy, and
output) and the high likelihood that a model of a system
will consist of multiple subtasks (e.g. withdraw, deposit,
check balance, in the ATM context). Perhaps hundreds of
tasks will comprise the task set for a particular domain to be
drawn upon in composing larger tasks. Second, interface
designers are likely to be familiar with the IDE metaphor
based on knowledge of rapid prototyping tools such as
Microsoft Visual Studio and web design tools like
Macromedia Dreamweaver. The X-PRT interface is
organized into 3 primary panes: a file pane to manage the
model components (task, user interface, architecture,
strategy, output), a view pane to view and edit the model
components, and a run pane to run the model and generate
predictions.

The modeling tasks (T1-T7) will be used as a framework to
systematically cover X-PRT design elements. They are
presented in the order discussed above for consistency. As
of this writing the design elements covered represent
functionality already implemented in a first version of X-
PRT and user tested as described in the design process
subsection at the end of this section.

Design of Task Knowledge (T1)
Given the requirement to represent the task as an
abstraction above the code level, X-PRT provides a directed
entry interface for the hierarchical specification of the task
(Figure 1). The user explicitly specifies some of the same
parameters that CORE requires and makes some parameters
implicit. For example, using a tree representation for parent
rather than the attribute value pair “parent=node ID.” Other
parameters such as presentation color or unique id’s are
automatically handled by the system and never presented to
the user.

The choice of a file-structure-like hierarchy is based on
users’ familiarity with this cross-platform convention.
Composing larger tasks from component tasks is supported

by allowing hierarchy nodes (e.g. the “withdraw money”
node below) to be copied and pasted along with all children
such that a user can work on multiple tasks within a project
and when ready can easily copy them into a larger task.

Figure 1: Hierarchical task knowledge in X-PRT (ATM task).

This design fulfills two of the requirements listed above: an
abstraction above the code level and the ability to build
larger tasks from component tasks. More sophisticated
reuse, the ability to embed tasks within other tasks such that
modifications to a task propagate to all embedded instances,
is planned for future design and development as is
designating and modeling from explicit templates.
However, the current design’s improved legibility over
code and the explicit presentation of required fields
associated with each action (such as “Action” and “Target”
in Figure 1) serve to guide the user to enter allowable
values and reduce errors.

Design of Operator Skill (T2)
X-PRT aggregates level of skill and similar parameters in a
single “Person” dialog box associated with each project (see
figure 2). The user sets a slider that represents the desired
level of skill.

Figure 2: Dialog where level of skill parameters are set.

Though the representation of skill as a slider is a relatively
simple design choice, the entire application works to
support this level of simplicity in order to predict multiple
levels of skill rather than build multiple or more complex
models to access this type of valuable prediction. A more
thorough presentation of the underlying psychological
theory and advances in the CORE engine that make such a
simple presentation possible are discussed later in this
paper.

 6

This design fulfills the above requirement to generate
predictions at multiple levels from a single model.
However, it does not yet support heterogeneous mixtures of
these skills. The next version of X-PRT will provide the
ability to specify the level of skill for each node in the
hierarchy.

Design of The Environment or Interface (T3)
X-PRT supports the specification of the user interface in a
minimal WYSIWYG manner. If the user has an existing
screenshot of the interface, she imports that image and
identifies only interactive widgets relevant to her task. She
does this by dragging semi-transparent rectangles over them
(much like specifying hot spots in Macromedia
Dreamweaver). This is based on the method employed by
CogTool, which has users import screenshots into
Macromedia Dreamweaver, add actual hot spots, and export
the HTML in order to get the positions and dimensions of
the hot spots [9]. If on the other hand the user does not have
a screenshot to import, the system labels each interactive
widget with the name field on a plain background to
distinguish it from other widgets. In both cases, each
interactive widget must be named and can be precisely
positioned by tweaking X and Y coordinates.

A user interface can be created consisting of many screens
(with or without screenshots) which can be managed
(added, deleted, reordered) in thumbnail form in a manner
similar to the slide thumbnail pane within Microsoft
PowerPoint. X-PRT then calculates the Fitts’s Law
estimates based on distances between widgets. A benefit of
this approach is the modeler does not have to recalculate
Fitts’s Law if a widget is moved (as part of a redesign) or if
the task is changed to press buttons in a different order
(meaning the distances between one button and the next
change).

This design fulfills three of the requirements set forth for
interface description: to provide a physical description of
interface layout abstracted above the level of code, enable
automatic calculation of Fitts’s Law, and allow the use of
existing screenshots or define a new interface.

Design of Architectural Assumptions (T4)
While most modeling methods and cognitive architectures
embody a single set of architectural assumptions regarding
human cognition, CORE encodes assumptions explicitly as
constraints and provides the ability to run a given model
with different assumptions. Users working on cognitive
research have the option to encode different architectural
assumptions and test their effect on behavior predictions.
For example, Howes et al. encoded both ACT-R style
assumptions as constraints and then modified those
assumptions to encode EPIC style assumptions in order to
explore the effect of the differences on the predicted
behavior [13]. X-PRT supports and extends this capability
by providing a level of abstraction that allows the modeler
to reduce the work required to run a model using different

architectures. X-PRT allows multiple architectures to have
a common interface so that no task changes are required to
run the task with a different architecture. The common
interface defines what values the user needs to define in her
task for that set of architectures to run. For architectures
that are too different to support the same interface, X-PRT
converts the task to run under the new architecture interface
as much as possible, minimizing the number of changes
necessary.

The current design fulfills the above requirement to provide
an explicit representation of the architectural assumptions,
and the capability to run the model under different
architectural assumptions. The requirement to provide a
representation above the code level is not addressed in the
current version. There is an existing prototype of an
architecture editor that must be tested, iterated, and
integrated into the running version of X-PRT.

Design of Strategy (T5)
At present, the support for strategy specification primarily
resides at the level of the CORE implementation; it is not
yet completely supported in X-PRT. There are two
fundamentally different ways that strategies may be
specified in the model. First, X-PRT does support, in a
limited fashion, making links between hierarchical task
knowledge and specific strategies. This assumes the
existence of a library of strategies from which complex
tasks may be hierarchically composed. For each action
defined within the task, the user is prompted to specify the
specific strategy used (e.g. "click" as shown in Figure 1).
Based on the strategy chosen, an appropriate set of
parameters is presented. While this represents a significant
advance over detailed coding, it still falls short of a general
solution that systematically supports new strategy
composition from architectural primitives.

One possibility that needs to be to explored, however, is
exploiting the capabilities for hierarchical task specification
to build the strategies as well. Even micro-strategies such
move-and-click can be given meaningful hierarchical
descriptions, with internal components that may be
reusable. The challenge lies in making the cognitive
architectural primitives accessible in the same way that the
existing strategies like "click" are now accessible in the
hierarchy editor (figure 1).

A second and novel way that CORE (and by extension X-
PRT) supports strategy specification is by partially
eliminating the need for strategy specification. This is
possible because some detailed and complex aspects of
behavioral control—for example, anticipatory eye
movements or anticipatory hand positioning—emerge from
CORE’s automatic search for the optimal way to satisfy the
task and architectural constraints. In short, users can focus
on the higher task-level strategic composition (“perform
these two task operations as quickly as possible in
sequence”), and leave the CORE modeling engine to work
out the precise details of how to stitch together the task-

 7

level operations. The details of this stitching-together are
precisely what constitute multi-tasking executive strategies
in a model like EPIC.

Design of Model Output (T6)
In terms of output visualization, X-PRT offers an
improvement upon the traditional horizontally scrolling
Gantt chart in the form a focus-plus-context style interface.
The Gantt chart is presented in a 10% scale overview at the
bottom of the screen (overview scrolls if necessary). In the
overview area, the user can click and drag to move a
rectangle that represents the view and can resize the
overview area itself from the default 10% by increasing or
decreasing its size with a standard pane resize bar.

This design provides a detailed view of the data and goes a
small part of the way towards providing a high level
overview with the context pane. However, the current
overview is visual rather than conceptual. In practice, this
requirement is not met nor is the requirement for a
suggestion facility.

Design of Overhead Tasks (T7)
X-PRT separates and organizes each model component for
the purposes of opening, editing, associating, copying and
composing these components. Within X-PRT, the task is
the central component around which other components are
organized based on the understanding that the modeler’s
goal is to predict behavior for a particular task (projects can
contain arbitrary numbers of tasks). For example, if a
modeler is attempting to assess interfaces A and B, X-PRT
manages the representation of both user interfaces and the
linkage between the interfaces and the task. X-PRT does
not rely on the user to remember this type of linkage, nor do
files have to be explicitly manipulated in an external file
system, as they are all stored within the context of a project.

To mitigate the problems with manual versioning, such as
making a mistake and not being able to quickly restore the
component’s original state, X-PRT takes a snapshot of the
model components that serve as inputs as well as the output
of each run (currently in Gantt chart form). The modeler
can view this run history with a single click and return to
the earlier version of a model component with a second
click.

Existing tools often rely on the command line to run models
and generate behavior predictions as output. X-PRT
provides a consistent, application-internal method of
running models and generating behavioral predictions. The
run pane allows the user to select a model, an associated
architecture, and press the run button. X-PRT takes care of
all the overhead necessary to make command line calls and
pass arguments in order to run a model.

X-PRT is a standalone application installed by double
clicking, as are commercial applications. It installs
necessary elements transparently (e.g. the Sicstus Prolog
environment). Standalone application implementation also

allows the system to provide standard functionality like
software update, which prompts users to download a new
version.

This design addresses all the key overhead tasks observed
to date, including file management, versioning, command
line execution, and installation. However, overhead is a
broad category and in extended use it is likely that users
will uncover more of these types of challenges.

Design Process
Thus far, the discussion has covered the design of X-PRT
itself and not the design process, which is also worth
mentioning. The team has followed a standard HCI iterative
design and test method. The first round of user testing is
complete (number of users=5). Some design changes have
been implemented while others are prioritized for
development along with other work. The goal for this first
round of user testing was to validate the X-PRT framework
and IDE project metaphor. While the user tests uncovered
many usability problems, they were primarily lower level
problems like the fact that command line users expected to
save explicitly rather than having the system do it
automatically. Overall, the framework appeared to support
the sample task of interface specification, task knowledge
modification, model run, and output interpretation. As the
work progresses, further iterations of the tool will be tested
and metrics such as time on task will be tracked.

The Underlying Modeling Engine: CORE
In order to enable several of the features described in the
design section such as easy description of operator skill and
compositional reuse of tasks, X-PRT takes advantage of
many theoretical advances of Cognitive Constraint
Modeling (CCM) [7,13,21]. CCM represents a new
approach to cognitive modeling that is characterized by
three principles that distinguish it from existing simulation-
based approach such as production system architectures. (1)
Descriptions of behavior are derived via constraint
satisfaction over explicitly declared architectural, task, and
strategy constraints. One significant effect that this has on
the practice of modeling is that architectural theory is
uniformly encoded as explicit constraints that are
inspectable and modifiable in the same way as task and
strategy constraints. The generation of behavioral
predictions is essentially an automated proof derivation
from these explicit assumptions. (2) The details of
behavioral control emerge in part from optimizing behavior
with respect to objective functions intended to capture
general strategic goals (e.g. go as fast as possible). A
significant effect that this has on the practice of modeling is
that the modeler is relieved of some of the difficult work of
micro-programming detailed cognitive/perceptual/motor
strategies for particular tasks. Rather, these details emerge
from the behavior derivation process when it is guided by
the explicitly declared objective goals. (3) The architectural
building blocks are based on an ontology of resource-
constrained cascaded processes. This provides a simple but

 8

extremely powerful way to construct complex behaviors
from information processing primitives that specify the
basic cognitive, perceptual, and motor processes and how
they communicate. This ontology has been used to specify
versions of cognitive architectures based on the Model
Human Processor, ACT-R, and Epic [7,13,21]. All of these
principles have been realized in an implemented
computational modeling system called CORE (Constraint-
based Optimizing Reasoning Engine), which uses
constraint-satisfaction techniques that are guaranteed to
yield optimal solutions.

EMPIRICAL DATA AND MODEL PREDICTIONS
Recently, CORE has been used to develop models of
learning hierarchically structured tasks. Although it might
seem that a modeling approach that generates optimal
behavior would be suitable only for predicting highly
skilled behavior, the approach can be applied quite
naturally to predicting novice and intermediate skill levels
as well. A key to this success is the discovery that
hierarchical task structures not only provide a natural high
level task description for modelers to work with, but are
also the cognitive structures that mediate performance
during task acquisition.

Consider first the role of task hierarchies as a high-level
task specification. Goal hierarchies are ubiquitous in
cognitive modeling and play a central role in GOMS-based
methods. For many routine HCI tasks they are a natural
specification because they directly reflect the task structure.
See Figure 1, in the X-PRT design section, for part of a
hierarchical description of a banking task.

The challenge in using such high-level specifications for
developing millisecond level predictions of skilled
performance is that humans organize their behavior in
highly flexible ways that violate the putative encapsulation
of the subtasks [10,13]. For example, humans exhibit
anticipatory behaviors, where behaviors associated with a
later subtask may intrude and intermix with behaviors
associated with an earlier subtask. This kind of flexible
scheduling is characteristic of human skill, but is at odds
with traditional notions of encapsulated, reusable
components.

How does the CCM approach, and CORE in particular,
solve this problem? The answer is that CORE does not
"execute" the task hierarchy. Rather, there is first a
transformation of the hierarchy into independent task and
strategy constraints, which, together with architectural
constraints plus the optimizing constraint satisfaction,
naturally yield the required flexible behavior. In this way,
the hierarchy is taken as an abstract specification of task
knowledge, rather than a control structure.

It is possible, however, to build CORE models that do treat
the hierarchy as a control structure – in particular, as a
structured memory that is retrieved piece-by-piece to
control behavior. A natural assumption is that this kind of

memory retrieval guides performance early in task
acquisition, and skilled behavior emerges in part as a
function of gradually eliminating these explicit memory
retrievals [1]. ACT-R's production compilation mechanism
provides a detailed process model of how this learning
might take place. CORE is able to abstractly capture this
kind of skill acquisition with two simple additions to the
highly skilled model. First, memory retrieval processes are
added to access the task knowledge, and behavior is
contingent upon the results of these retrievals. Second,
learning is modeled in an abstract way by simply flattening
the task hierarchy. This is the mechanism that supports
manipulation of operator skill level (T2) as discussed is the
design section above. In all cases, behavior is generated in
the same way via constraint satisfaction.

There are two major qualitative empirical predictions that
this model makes. First, early in practice the hierarchical
memory retrievals will serve as barriers to flexible
scheduling of behaviors; thus, anticipatory behaviors will
only emerge as these retrievals are eliminated. Second,
early in practice the hierarchical memory retrievals will
increase response latencies, and more specifically, will
increase latencies as a direct function of hierarchy depth.
This qualitative pattern is shown in Figure 3, which plots
the model's reaction times to button presses in a mouse-
driven ATM banking task.

Figure 3: Model predicted times for button presses in an ATM

task [13].

The task steps (in this case button presses) are grouped into
large, medium, and small hierarchical transition, reflecting
the amount of memory retrieval required to access the
relevant bit of task knowledge to press the key. Early in
practice, the operator must traverse the entire hierarchy as
specified by the modeler. Midway through practice,
assuming a four-tier hierarchy, the retrievals associated
with third or lowest set of non-leaf nodes of the hierarchy
are removed. Late in practice the second level of the
hierarchy is removed and the operator represents what were
once individual sub-goals as a single goal. Figure 3 shows
this collapse, so that the end point converges on skilled

 9

behavior in which the hierarchical structure is no longer
evident.

Recently, Lewis, Vera, and Howes [13] have developed an
empirical paradigm that tests this qualitative prediction, by
varying hierarchical structure (via instruction) while
carefully controlling for other aspects of the task and
interface. Results from an initial set of experiments reveal
not just a single smooth learning curve for the overall task
performance, but separate learning curves as a function of
hierarchical task boundaries (Figure 4) [13]. Major subtask
boundaries (at the start of major new subtasks) produced
longer reaction times than minor boundaries within the
lowest-level task groupings, and so on, as predicted by the
model. In short, task hierarchies are not just convenient
high-level notations but psychologically real control
constructs which guide behavior during task acquisition.
Unlike the model, there appears to be some continued effect
of the task hierarchy quite late in practice, and the basis of
this effect is currently being explored.

This is similar to the effects of production compilation in
ACT-R (an ACT-R model of this task has been developed),
but the approach does not depend on modeling the detailed
processes of learning, and it makes no representational
assumptions beyond that of the task hierarchy. The method
will initially be restricted to modeling the effects of
learning the task structure-it will not, for example, be able
to model attentional learning (where to look for things on
the interface). It is therefore restricted in scope, but
represents an important step forward in incorporating
learning predictions into easy-to-use modeling tools.

Figure 4: Reaction times for button presses an ATM task [13].

REFLECTIONS AND COMPARISONS
X-PRT represents a new approach to supporting cognitive
modeling resulting from a combination of systematic user-
centered design with recent developments in cognitive
modeling based on constraint-satisfaction as implemented
in CORE. It is worth summarizing here what we believe are
its important features, highlighting what it has in common
with other approaches and what makes it distinctive.

1. X-PRT was designed from the ground-up to support a
comprehensive set of modeling activities in an integrated
fashion. While it shares with both high-level languages
(such as ACT-Simple, TAQL [18,22] and modeling
toolkits (such as CogTool and user modeling design tool
[9,16]) the goal of making modeling easier, we believe no
other tool addresses the range of modeling activities
represented in Table 1.

2. X-PRT provides rudimentary support for the easy
generation of models at multiple skill levels from a single
task specification. The ability to model at multiple skill
levels is a feature of learning architectures such as ACT-
R, but these approaches require considerable expertise in
the details of the architectures and learning mechanism.
Furthermore, none of the high-level languages that
compile into ACT-R or Soar code systematically support
learning. We believe that X-PRT and CORE represent an
important and novel step toward developing tools that
make the application of learning theory accessible to a
broader user community.

3. X-PRT shares with GOMS-based approaches (and nearly
all high-level modeling languages) the use and benefits of
hierarchical task descriptions. But hierarchies play an
even more extensive role in X-PRT and CORE: they are
both the method of task description and compositional
reuse and an important part of the cognitive theory that
supports the generation of behavior at multiple skill
levels. This is in large part what makes the learning
model in X-PRT and CORE powerful and usable: it
exploits the existing natural hierarchical specifications.

4. Finally, perhaps the most unique feature of X-PRT
modeling is that some complex aspects of behavioral
control (e.g., micro-strategies for making anticipatory
movements) emerge automatically from the search for
the most adaptive behavior given the posited objective
function, combined with task, architecture, and partial
strategic constraints. We believe this is a theoretical
advance in cognitive modeling, but it is also a usability
advance, because it reduces the burden on the modeler for
strategy specification.

FUTURE WORK
Although we are clearly in the beginning stages of this
project, the initial results are promising: X-PRT supports
the rapid development of detailed models of routine GUI
interactions at multiple skill levels, based on a single high-
level hierarchical task specification. One of the early
discoveries in this project is the surprisingly powerful set of
roles that hierarchies play: they serve as both a natural task
specification and a model of the cognitive structures that
mediate task acquisition. This dual role is directly
supported by CORE, and made easily accessible by X-PRT.

There is significant work remaining on both the systematic
evaluation of the tool (and comparison to existing modeling
tools), and extending the functionality with respect to tasks
T1-T7 identified earlier. This work highlights just one

 10

interesting future direction that bears on learning models.
As discussed earlier, skill level (T2) is currently set at the
project (i.e. model) level rather than at the individual
subtask level, but it is clear that most tasks of applied
interest will be heterogeneous mixtures of routine and novel
components. The current plan is to again exploit the
hierarchical task specifications by permitting modelers to
specify skill parameters for any individual subtask in the
overall task, as well as permitting modelers to specify
performance parameters associated with cross-cutting skills
such mouse-based target tracking. The development of X-
PRT along these lines will continue to push the state-of-the-
art in both basic research and applied cognitive modeling.

REFERENCES
1. Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,

Lebiere, C., & Qin, Y. (in press). An integrated theory
of mind. Psychological Review.

2. Baskin, J. D., John, B. E. (1998). Comparison of GOMS
Analysis Methods Late Breaking Results: Ubiquitous
Usability Engineering. Proceedings of Conference on
Human Factors in Computing Systems, v.2 p.261-262.

3. Beyer, H., Holtzblatt, K. Contextual Design. Contextual
Design: A Customer-Centered Approach to Systems
Designs, Morgan Kaufman, 1998.

4. Card, S. K., Moran, T.P. and Newell, A. The
Psychology of Human-Computer Interaction. Lawrence
Erlbaum Associates, Hillsdale, NJ, USA (1983).

5. Gong, R. (1993). Validating and refining the GOMS
model methodology for software user interface design
and evaluation. Ph.D. dissertation, University of
Michigan.

6. Gray, W. D., John, B. E., & Atwood, M. E. (1993).
Project Ernestine: Validating GOMS for predicting and
explaining real-world task performance. Human
Computer Interaction., 8(3), 237-309.

7. Howes, A., Vera, A. H., Lewis, R. L., and McCurdy, M.
(2004). Cognitive constraint modeling: A formal
approach to supporting reasoning about behavior.
Proceedings of the Twenty Fifth Conference of the
Cognitive Science Society, Chicago, IL.

8. John, B., E., Kieras, D., E. (1996). The GOMS family of
user interface analysis techniques: comparison and
contrast. ACM Transactions on Computer-Human
Interaction, Volume 3, Issue 4 pg. 320 – 351.

9. John, B. E., Prevas, K., Salvucci, D. D., Koedinger, K.
(2004). Predictive Human Performance Modeling Made
Easy. Proceedings of the conference on Human factors
in computing systems, Vienna, Austria.

10.John, B. E., Vera, A., Matessa, M., Freed, M.,
Remington, R., (2002). Automating CPM-GOMS.
Proceedings of the Conference on Human factors in
computing systems, Minneapolis, MN.

11.Kieras, D. E., Wood, S. D., Abotel, K., and Hornof, A.
(1995). GLEAN: A Computer-Based Tool for Rapid
GOMS Model Usability Evaluation of User Interface.
Proceedings of the ACM Symposium on User Interface
Software and Technology, ACM Press, pg 91-100.

12.Koedinger, K. R., Aleven, V., Heffernan, N., McLaren,
B. M., and Hockenberry, M. (2004). Opening the Door
to Non-Programmers: Authoring Intelligent Tutor
Behavior by Demonstration. Proceeding of Intelligent
Tutoring Systems Conference, Maceio, Brazil.

13.Lewis, R.L., Vera, A. H., and Howes, A. (2004). A
constraint-based approach to understanding the
composition of skill. Proceedings of the Sixth
International Conference on Cognitive Modeling,
Pittsburgh, PA.

14.Matessa, M. (2004) An ACT-R Framework for
Interleaving Templates of Human Behavior.
Proceedings of the Twenty-sixth Annual Conference of
the Cognitive Science Society, Chicago IL.

15.Meyer, D. E., & Kieras, D. E. (1997). A computational
theory of executive cognitive processes and multiple-
task performance: Part 1. Basic mechanisms.
Psychological Review, 104, 3–65.

16.Ritter, F. E., Van Rooy, D., & St. Amant, R. (2002). A
user modeling design tool based on a cognitive
architecture for comparing interfaces. Proceedings of
the 4th International Conference on Computer-Aided
Design of User Interfaces 111-118. Dordrecht, NL.

17.Ritter, F. E., & Young, R. M. (2001). Embodied models
as simulated users: Introduction to this special issue on
using cognitive models to improve interface design.
International Journal of Human-Computer Studies, 55,
1-14.

18.Salvucci, D. D., & Lee, F. J. (2003). Simple cognitive
modeling in a complex cognitive architecture.
Proceedings of the conference on Human Factors in
Computing Systems (pg. 265-272). New York, NY.

19.St. Amant, R., & Ritter, F. E. (2004). Automated GOMS
to ACT-R model generation. In submitted to the
International Conference on Cognitive Modeling. 26-
31. Mahwah, NJ: Lawrence Erlbaum.

20.Taatgen, N.A. & Lee, F.J. (2003). Production
Compilation: A simple mechanism to model Complex
Skill Acquisition. Human Factors, 45(1), 61-76.

21. Vera, A. H., Howes, A., McCurdy, M., and Lewis, R. L.
(2004). A constraint satisfaction approach to predicting
skilled interactive cognition. Proceedings of the
Conference on Human Factors in Computing Systems,
Vienna, Austria.

22. G.R. Yost, Taql: A Problem Space Tool for Expert-System
Development, doctoral dissertation, Carnegie Mellon Univ.,
Pittsburgh, Pa., 1992.

